Source code for mrmustard.physics.bargmann

# Copyright 2023 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This module contains functions for performing calculations on objects in the Bargmann representations.
"""
from typing import Sequence, Tuple

import numpy as np

from mrmustard import math, settings
from mrmustard.physics.husimi import pq_to_aadag, wigner_to_husimi
from mrmustard.utils.typing import ComplexMatrix, ComplexVector


[docs] def cayley(X, c): r"""Returns the Cayley transform of a matrix: :math:`cay(X) = (X - cI)(X + cI)^{-1}` Args: c (float): the parameter of the Cayley transform X (Tensor): a matrix Returns: Tensor: the Cayley transform of X """ I = math.eye(X.shape[0], dtype=X.dtype) return math.solve(X + c * I, X - c * I)
[docs] def wigner_to_bargmann_rho(cov, means): r"""Converts the wigner representation in terms of covariance matrix and mean vector into the Bargmann `A,B,C` triple for a density matrix (i.e. for `M` modes, `A` has shape `2M x 2M` and `B` has shape `2M`). The order of the rows/columns of A and B corresponds to a density matrix with the usual ordering of the indices. Note that here A and B are defined with respect to the literature. """ N = cov.shape[-1] // 2 A = math.matmul(math.Xmat(N), cayley(pq_to_aadag(cov), c=0.5)) Q, beta = wigner_to_husimi(cov, means) b = math.solve(Q, beta) B = math.conj(b) num_C = math.exp(-0.5 * math.sum(math.conj(beta) * b)) den_C = math.sqrt(math.det(Q), dtype=num_C.dtype) C = num_C / den_C return A, B, C
[docs] def wigner_to_bargmann_psi(cov, means): r"""Converts the wigner representation in terms of covariance matrix and mean vector into the Bargmann A,B,C triple for a Hilbert vector (i.e. for M modes, A has shape M x M and B has shape M). """ N = cov.shape[-1] // 2 A, B, C = wigner_to_bargmann_rho(cov, means) return A[N:, N:], B[N:], math.sqrt(C)
# NOTE: c for th psi is to calculated from the global phase formula.
[docs] def wigner_to_bargmann_Choi(X, Y, d): r"""Converts the wigner representation in terms of covariance matrix and mean vector into the Bargmann `A,B,C` triple for a channel (i.e. for M modes, A has shape 4M x 4M and B has shape 4M).""" N = X.shape[-1] // 2 I2 = math.eye(2 * N, dtype=X.dtype) XT = math.transpose(X) xi = 0.5 * (I2 + math.matmul(X, XT) + 2 * Y / settings.HBAR) xi_inv = math.inv(xi) A = math.block( [ [I2 - xi_inv, math.matmul(xi_inv, X)], [math.matmul(XT, xi_inv), I2 - math.matmul(math.matmul(XT, xi_inv), X)], ] ) I = math.eye(N, dtype="complex128") o = math.zeros_like(I) R = math.block( [[I, 1j * I, o, o], [o, o, I, -1j * I], [I, -1j * I, o, o], [o, o, I, 1j * I]] ) / np.sqrt(2) A = math.matmul(math.matmul(R, A), math.dagger(R)) A = math.matmul(math.Xmat(2 * N), A) b = math.matvec(xi_inv, d) B = math.matvec(math.conj(R), math.concat([b, -math.matvec(XT, b)], axis=-1)) / math.sqrt( settings.HBAR, dtype=R.dtype ) C = math.exp(-0.5 * math.sum(d * b) / settings.HBAR) / math.sqrt(math.det(xi), dtype=b.dtype) # now A and B have order [out_r, in_r out_l, in_l]. return A, B, math.cast(C, "complex128")
[docs] def wigner_to_bargmann_U(X, d): r"""Converts the wigner representation in terms of covariance matrix and mean vector into the Bargmann `A,B,C` triple for a unitary (i.e. for `M` modes, `A` has shape `2M x 2M` and `B` has shape `2M`). """ N = X.shape[-1] // 2 A, B, C = wigner_to_bargmann_Choi(X, math.zeros_like(X), d) return A[2 * N :, 2 * N :], B[2 * N :], math.sqrt(C)
[docs] def complex_gaussian_integral( Abc: tuple, idx_z: tuple[int, ...], idx_zconj: tuple[int, ...], measure: float = -1 ): r"""Computes the Gaussian integral of the exponential of a complex quadratic form. The integral is defined as (note that in general we integrate over a subset of 2m dimensions): :math:`\int_{C^m} F(z) d\mu(z)` where :math:`F(z) = \textrm{exp}(-0.5 z^T A z + b^T z)` Here, ``z`` is an ``n``-dim complex vector, ``A`` is an ``n x n`` complex matrix, ``b`` is an ``n``-dim complex vector, ``c`` is a complex scalar, and :math:`d\mu(z)` is a non-holomorphic complex measure over a subset of m pairs of z,z* variables. These are specified by the indices ``idx_z`` and ``idx_zconj``. The ``measure`` parameter is the exponent of the measure: :math: `dmu(z) = \textrm{exp}(m * |z|^2) \frac{d^{2n}z}{\pi^n} = \frac{1}{\pi^n}\textrm{exp}(m * |z|^2) d\textrm{Re}(z) d\textrm{Im}(z)` Note that the indices must be a complex variable pairs with each other (idx_z, idx_zconj) to make this contraction meaningful. Please make sure the corresponding complex variable with respect to your Abc triples. For examples, if the indices of Abc denotes the variables ``(\alpha, \beta, \alpha^*, \beta^*, \gamma, \eta)``, the contraction only works with the indices between ``(\alpha, \alpha^*)`` pairs and ``(\beta, \beta^*)`` pairs. Arguments: A,b,c: the ``(A,b,c)`` triple idx_z: the tuple of indices of the z variables idx_zconj: the tuple of indices of the z* variables measure: the exponent of the measure (default is -1: Bargmann measure) Returns: The ``(A,b,c)`` triple of the result of the integral. Raises: ValueError: If ``idx_z`` and ``idx_zconj`` have different lengths. """ A, b, c = Abc if len(idx_z) != len(idx_zconj): raise ValueError("idx_z and idx_zconj must have the same length") n = len(idx_z) idx = tuple(idx_z) + tuple(idx_zconj) if not idx: return A, b, c not_idx = tuple(i for i in range(A.shape[-1]) if i not in idx) I = math.eye(n, dtype=A.dtype) Z = math.zeros((n, n), dtype=A.dtype) X = math.block([[Z, I], [I, Z]]) M = math.gather(math.gather(A, idx, axis=-1), idx, axis=-2) + X * measure bM = math.gather(b, idx, axis=-1) not_idx = tuple(i for i in range(A.shape[-1]) if i not in idx) if math.asnumpy(not_idx).shape != (0,): D = math.gather(math.gather(A, idx, axis=-1), not_idx, axis=-2) R = math.gather(math.gather(A, not_idx, axis=-1), not_idx, axis=-2) bR = math.gather(b, not_idx, axis=-1) A_post = R - math.matmul(D, math.inv(M), math.transpose(D)) b_post = bR - math.matvec(D, math.solve(M, bM)) else: A_post = math.astensor([]) b_post = math.astensor([]) c_post = ( c * math.sqrt((-1) ** n / math.det(M)) * math.exp(-0.5 * math.sum(bM * math.solve(M, bM))) ) return A_post, b_post, c_post
[docs] def join_Abc(Abc1, Abc2): r"""Joins two ``(A,b,c)`` triples into a single ``(A,b,c)`` triple by block addition of the ``A`` matrices and concatenating the ``b`` vectors. Arguments: Abc1: the first ``(A,b,c)`` triple Abc2: the second ``(A,b,c)`` triple Returns: The joined ``(A,b,c)`` triple """ A1, b1, c1 = Abc1 A2, b2, c2 = Abc2 A12 = math.block_diag(A1, A2) b12 = math.concat([b1, b2], axis=-1) c12 = math.outer(c1, c2) return A12, b12, c12
[docs] def reorder_abc(Abc: tuple, order: Sequence[int]): r""" Reorders the indices of the A matrix and b vector of an (A,b,c) triple. Arguments: Abc: the ``(A,b,c)`` triple order: the new order of the indices Returns: The reordered ``(A,b,c)`` triple """ A, b, c = Abc A = math.gather(math.gather(A, order, axis=-1), order, axis=-2) b = math.gather(b, order, axis=-1) if len(c.shape) == len(order): c = math.transpose(c, order) return A, b, c
[docs] def contract_two_Abc( Abc1: Tuple[ComplexMatrix, ComplexVector, complex], Abc2: Tuple[ComplexMatrix, ComplexVector, complex], idx1: Sequence[int], idx2: Sequence[int], ): r""" Returns the contraction of two ``(A,b,c)`` triples with given indices. Note that the indices must be a complex variable pairs with each other to make this contraction meaningful. Please make sure the corresponding complex variable with respect to your Abc triples. For examples, if the indices of Abc1 denotes the variables ``(\alpha, \beta)``, the indices of Abc2 denotes the variables ``(\alpha^*,\gamma)``, the contraction only works with ``idx1 = [0], idx2 = [0]``. Arguments: Abc1: the first ``(A,b,c)`` triple Abc2: the second ``(A,b,c)`` triple idx1: the indices of the first ``(A,b,c)`` triple to contract idx2: the indices of the second ``(A,b,c)`` triple to contract Returns: The contracted ``(A,b,c)`` triple """ Abc = join_Abc(Abc1, Abc2) return complex_gaussian_integral( Abc, idx1, tuple(n + Abc1[0].shape[-1] for n in idx2), measure=-1.0 )