Calculations on Bargmann objects¶
This module contains functions for performing calculations on objects in the Bargmann representations.
Functions¶

Returns the Cayley transform of a matrix: \(cay(X) = (X  cI)(X + cI)^{1}\) 

maps a matrix or vector from the q/p basis to the a/adagger basis 

Converts the wigner representation in terms of covariance matrix and mean vector into the Bargmann A,B,C triple for a channel (i.e. for M modes, A has shape 4M x 4M and B has shape 4M). 

Converts the wigner representation in terms of covariance matrix and mean vector into the Bargmann A,B,C triple for a unitary (i.e. for M modes, A has shape 2M x 2M and B has shape 2M). 

Converts the wigner representation in terms of covariance matrix and mean vector into the Bargmann A,B,C triple for a Hilbert vector (i.e. for M modes, A has shape M x M and B has shape M). 

Converts the wigner representation in terms of covariance matrix and mean vector into the Bargmann A,B,C triple for a density matrix (i.e. for M modes, A has shape 2M x 2M and B has shape 2M). 

Returns the husimi complex covariance matrix and means vector. 
Variables¶
A class to manage the different backends supported by Mr Mustard. 

A class containing various settings that are used by Mr Mustard throughout a session. 