# Abc triples for Bargmann representation¶

This module contains the (A, b, c) triples for the Fock-Bargmann representation of various states and transformations.

## Functions¶

 The (A, b, c) triple of a tensor product of amplifiers. The (A, b, c) triple of of a tensor product of atternuators. The entire family of Kraus operators of the attenuator (loss) channel as a single (A, b, c) triple. bargmann_to_quadrature_Abc(n_modes, phi) The (A, b, c) triple of the multi-mode kernel $$\langle \vec{p}|\vec{z} \rangle$$ between bargmann representation with ABC Ansatz form and quadrature representation with ABC Ansatz. beamsplitter_gate_Abc(theta[, phi]) The (A, b, c) triple of a tensor product of two-mode beamsplitter gates. coherent_state_Abc(x[, y]) The (A, b, c) triple of a tensor product of pure coherent states. displaced_squeezed_vacuum_state_Abc(x[, y, ...]) The (A, b, c) triple of a tensor product of displazed squeezed vacuum states. displacement_gate_Abc(x[, y]) The (A, b, c) triple of a tensor product of displacement gates. displacement_map_s_parametrized_Abc(s, n_modes) The (A, b, c) triple of a multi-mode s-parametrized displacement map. :math: D_s(vec{gamma}^*, vec{gamma}) = e^{frac{s}{2}|vec{gamma}|^2} D(vec{gamma}^*, vec{gamma}) = e^{frac{s}{2}|vec{gamma}|^2} e^{frac{1}{2}|vec{z}|^2} e^{vec{z}^*vec{gamma} - vec{z} vec{gamma}^*}. The indices of the final triple correspond to the variables $$(\gamma_1^*, \gamma_2^*, ..., z_1, z_2, ..., \gamma_1, \gamma_2, ..., z_1^*, z_2^*, ...)$$ of the Bargmann function of the s-parametrized displacement map, and correspond to out_bra, in_bra, out_ket, in_ket wires. fock_damping_Abc(n_modes) The (A, b, c) triple of a tensor product of Fock dampers. identity_Abc(n_modes) The (A, b, c) triple of a tensor product of identity gates. rotation_gate_Abc(theta) The (A, b, c) triple of of a tensor product of rotation gates. squeezed_vacuum_state_Abc(r[, phi]) The (A, b, c) triple of a tensor product of squeezed vacuum states. squeezing_gate_Abc(r[, delta]) The (A, b, c) triple of a tensor product of squeezing gates. The (A, b, c) triple of a tensor product of thermal states. The (A, b, c) triple of a tensor product of two mode squeezed vacuum states. twomode_squeezing_gate_Abc(r[, phi]) The (A, b, c) triple of a tensor product of two-mode squeezing gates. vacuum_state_Abc(n_modes) The (A, b, c) triple of a tensor product of vacuum states on n_modes.

## Variables¶

 Generator A generic version of collections.abc.Generator. Iterable A generic version of collections.abc.Iterable. Matrix ndarray(shape, dtype=float, buffer=None, offset=0, Scalar alias of Union[R, C, Z, N] Union Union type; Union[X, Y] means either X or Y. Vector ndarray(shape, dtype=float, buffer=None, offset=0, math A class to manage the different backends supported by Mr Mustard. settings A class containing various settings that are used by Mr Mustard throughout a session.