Abc triples for Bargmann representation

This module contains the (A, b, c) triples for the Fock-Bargmann representation of various states and transformations.

Functions

amplifier_Abc(g)

The (A, b, c) triple of a tensor product of amplifiers.

attenuator_Abc(eta)

The (A, b, c) triple of of a tensor product of atternuators.

attenuator_kraus_Abc(eta)

The entire family of Kraus operators of the attenuator (loss) channel as a single (A, b, c) triple.

bargmann_to_quadrature_Abc(n_modes, phi)

The (A, b, c) triple of the multi-mode kernel \(\langle \vec{p}|\vec{z} \rangle\) between bargmann representation with ABC Ansatz form and quadrature representation with ABC Ansatz.

beamsplitter_gate_Abc(theta[, phi])

The (A, b, c) triple of a tensor product of two-mode beamsplitter gates.

coherent_state_Abc(x[, y])

The (A, b, c) triple of a tensor product of pure coherent states.

displaced_squeezed_vacuum_state_Abc(x[, y, ...])

The (A, b, c) triple of a tensor product of displazed squeezed vacuum states.

displacement_gate_Abc(x[, y])

The (A, b, c) triple of a tensor product of displacement gates.

displacement_map_s_parametrized_Abc(s, n_modes)

The (A, b, c) triple of a multi-mode s-parametrized displacement map. :math: D_s(vec{gamma}^*, vec{gamma}) = e^{frac{s}{2}|vec{gamma}|^2} D(vec{gamma}^*, vec{gamma}) = e^{frac{s}{2}|vec{gamma}|^2} e^{frac{1}{2}|vec{z}|^2} e^{vec{z}^*vec{gamma} - vec{z} vec{gamma}^*}. The indices of the final triple correspond to the variables \((\gamma_1^*, \gamma_2^*, ..., z_1, z_2, ..., \gamma_1, \gamma_2, ..., z_1^*, z_2^*, ...)\) of the Bargmann function of the s-parametrized displacement map, and correspond to out_bra, in_bra, out_ket, in_ket wires.

fock_damping_Abc(n_modes)

The (A, b, c) triple of a tensor product of Fock dampers.

identity_Abc(n_modes)

The (A, b, c) triple of a tensor product of identity gates.

rotation_gate_Abc(theta)

The (A, b, c) triple of of a tensor product of rotation gates.

squeezed_vacuum_state_Abc(r[, phi])

The (A, b, c) triple of a tensor product of squeezed vacuum states.

squeezing_gate_Abc(r[, delta])

The (A, b, c) triple of a tensor product of squeezing gates.

thermal_state_Abc(nbar)

The (A, b, c) triple of a tensor product of thermal states.

two_mode_squeezed_vacuum_state_Abc(r[, phi])

The (A, b, c) triple of a tensor product of two mode squeezed vacuum states.

twomode_squeezing_gate_Abc(r[, phi])

The (A, b, c) triple of a tensor product of two-mode squeezing gates.

vacuum_state_Abc(n_modes)

The (A, b, c) triple of a tensor product of vacuum states on n_modes.

Variables

Generator

A generic version of collections.abc.Generator.

Iterable

A generic version of collections.abc.Iterable.

Matrix

ndarray(shape, dtype=float, buffer=None, offset=0,

Scalar

alias of Union[R, C, Z, N]

Union

Union type; Union[X, Y] means either X or Y.

Vector

ndarray(shape, dtype=float, buffer=None, offset=0,

math

A class to manage the different backends supported by Mr Mustard.

settings

A class containing various settings that are used by Mr Mustard throughout a session.